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a Unit of Bioinformatics & Connectivity Analysis (UBICA), Institute of Industrial Pharmacy, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de
Compostela, 15782 Santiago de Compostela, Spain
b CEQA, Faculty of Chemistry and Pharmacy, UCLV, Santa Clara 54830, Cuba
c Physico-Chemical Molecular Research Unit, Department of Organic Chemistry, Faculty of Pharmacy, 4150-047 Porto, Portugal
d REQUIMTE/Science Faculty, Chemistry Department, University of Porto, 4169-007 Porto, Portugal
e Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130, USA
a r t i c l e i n f o

Article history:
Received 1 July 2008
Received in revised form
26 September 2008
Accepted 30 September 2008
Available online 18 October 2008

Keywords:
QSPR
Biopolymers mixtures
Complex networks
* Correspondence to: Humberto González-Dı́az, Fac
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a b s t r a c t

The Quantitative Structure–Property Relationships (QSPRs) based on Graph or Network Theory are
important for predicting the properties of polymeric systems. In the three previous papers of this series
(Polymer 45 (2004) 3845–3853; Polymer 46 (2005) 2791–2798; and Polymer 46 (2005) 6461–6473) we
focused on the uses of molecular graph parameters called topological indices (TIs) to link the structure of
polymers with their biological properties. However, there has been little effort to extend these TIs to the
study of complex mixtures of artificial polymers or biopolymers such as nucleic acids and proteins. In this
sense, Blood Proteome (BP) is one of the most important and complex mixtures containing protein
polymers. For instance, outcomes obtained by Mass Spectrometry (MS) analysis of BP are very useful for
the early detection of diseases and drug-induced toxicities. Here, we use two Spiral and Star Network
representations of the MS outcomes and defined a new type of TIs. The new TIs introduced here are the
spectral moments (pk) of the stochastic matrix associated to the Spiral graph and describe non-linear
relationships between the different regions of the MS characteristic of BP. We used the MARCH-INSIDE
approach to calculate the pk(SN) of different BP samples and S2SNet to determine several Star graph TIs.
In the second step, we develop the corresponding Quantitative Proteome–Property Relationship (QPPR)
models using the Linear Discriminant Analysis (LDA). QPPRs are the analogues of QSPRs in the case of
complex biopolymer mixtures. Specifically, the new QPPRs derived here may be used to detect drug-
induced cardiac toxicities from BP samples. Different Machine Learning classification algorithms were
used to fit the QPPRs based on pk(SN), showing J48 decision tree classifier to have the best performance.
These results suggest that the present approach captures important features of the complex biopolymers
mixtures and opens new opportunities to the application of the idea supporting classic QSPRs in polymer
sciences.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A very important field of computational polymer sciences is
devoted to the development of Quantitative Structure–Property
Relationship (QSPR) models, linking the structure of polymers with
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their properties [1–4] or predicting the properties of catalysts of
polymerization reactions [5a]. It is quite effective to use Graph or
Complex Networks theory to deal with complicated chemical and
biological polymeric systems because it can provide an intuitive
image and help people gain useful insights into the mechanism
concerned [5b,c]. There are numerous works that use Topological
Indices (TIs) or different connectivity measures or Connectivity
Indices (CIs) of graph or networks to derive QSPR models for small
molecules [6] or polymers [7,8]. The reader may find two recent
reviews focused on the network or graph based QSPRs, ranging from
small-sized drugs to biopolymers and Complex Networks [9,10]. In
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this sense, it is also of major importance the comparative study
reported by Bonchev and Buck [11]. Specifically, in the three previous
papers of this series: its part 1 published in Ref. [12]; part 2 in Ref.
[13]; and part 3 in Ref. [14] we focused on the uses of molecular TIs
derived from the stochastic matrix associated to a graph or network
representation of one polymer structure. However, in general, the
application of TIs to the study of complex mixtures of artificial
polymers or biopolymers, such as nucleic acids and proteins is still an
emerging field dealing with a rather complicated problem. In this
sense, the continuation of the previous series with a work aimed to
extend QSPR models based on stochastic TIs to complex mixtures or
polymers or biopolymers falls by its own weight.

In particular, Blood Proteome (BP) is one of the most important
and complex mixtures containing protein polymers. Circulating
carrier proteins have been recently found to act as a reservoir for
the accumulation and amplification of bound low mass biomarkers,
integrating, amplifying and storing diagnostic information like
a capacitor stores electricity [15]. The blood proteome is changing
constantly as a consequence of the perfusion of the organ under-
going drug-induced damage and this process subsequently adds,
subtracts, or modifies the circulating proteome. Thus, even if these
small peptide fragments are many degrees of separation removed
from the actual insult, they can retain the specificity for the disease
because this process can arise from a specific type of biomarker
amplification based on the uniqueness of the tissue microenvi-
ronment where the organ toxicity occurs [16]. Consequently, BP
represents a potential target for the early detection of diseases and
drug-induced toxicities. Because body fluids such as serum, saliva
or urine are a protein-rich information reservoir that contains the
traces of what the blood has encountered on its constant perfusion
and percolation throughout the body [16] and the optimal perfor-
mance in the low mass range exhibited by Mass Spectroscopy (MS)
[17], the use of this method applied to proteomics may offer the
best chance of discovering these early stage changes. For instance,
outcomes obtained by MS analysis of BP could be useful for the
early detection of diseases and drug-induced toxicities.

The application of graph theory to MS was first proposed by
Bartels for peptide sequencing [18]. The basic idea consists in
transforming a mass spectrum into a graph called ‘‘spectrum graph’’.
Basically, each peak in the experimental spectrum is represented as
a vertex (or several vertices) in the spectrum graph and a directed
edge is established between two vertices if the mass difference of
the two vertices equals the mass of one or several amino acids.
Several algorithms that make use of spectrum graphs have been
designed for de novo peptide sequencing. Among the most popular
are ‘‘SeqMS’’ [19], ‘‘Lutefisk’’ [20], ‘‘Sherenga’’ [21] and more
recently ‘‘PepNovo’’ [22]. The construction of the spectrum graph of
all these algorithms shares the basic idea proposed by Bartels with
their respective particularities. However, most of the above-
mentioned methods deal mainly with the MS of one protein and
not with complex mixtures of biopolymers relevant to several
clinical problems. By contrary, drug toxicity and specifically car-
diotoxicity are serious adverse effects of chemotherapy involving
the complex mixtures of biopolymers present in BP. It encompasses
a spectrum of disorders, ranging from relatively benign arrhyth-
mias to potentially lethal conditions, such as myocardial ischemia/
infarction and cardiomyopathy [23]. The toxicity of chemothera-
peutic drugs can cause loss of myocytes sarcolemmal integrity,
release of bioactive markers into the extracellular environment
(tissue and circulation) and ultimately leading to the necrosis of
myocytes [24]. The extent and severity of the necrosis can be
monitored by the levels of bioactive markers [25]. However, the
number of new biomarkers reaching routine clinical use remains
unacceptably low [26]. Due to the thousands of intact and cleaved
proteins in the BP, finding the single disease-related protein could
be like searching for a needle in a haystack, requiring the separation
and identification of each protein biomarker. In addition, most
commonly used toxicity biomarkers appear only when significant
organ damage occurred. For these reasons, to identify patterns by
using the serum proteome spectrum instead of directly identify
a single marker candidate, represents a more attractive and realistic
choice for this purpose. In this sense, Petricoin et al. successfully
identified patterns of low molecular weight biomarkers as ion peak
features within the spectra, and used these patterns as the diag-
nostic endpoint itself for the early detection of drug-induced
cardiac toxicities [27], ovarian [28] and prostate cancer [29].

In the present work we continue the previous series of work
with a redirection of our attention to the application of new
stochastic TIs and QSPR method to BP. We aim to use it in gener-
ating a prediction model based on a graph theoretical approach
instead of directly identify patterns within the MS outputs. In our
previous work [30] we introduced an alternative graph theoretical
representation of BP in analogy to the four-color maps introduced
by Randic et al. for DNA sequences representation [31]. Here, we
derive a new family of stochastic TIs using Markov chain theory and
this new graphical representation of BP. The new TIs are the spec-
tral moments (srpk) of the stochastic associated to the Spiral graph
of BP. These numerical indices are then used as patterns in the
derivation of a Quantitative Proteome–Property Relationship
(QPPR) to illustrate the usefulness of this approach in complex
mixtures of biopolymers. In addition, we compare these results
with the topological indices of MS embedded Star Networks/
Graphs (eSG) [32] computed in this work and with the LN and SN
Shannon entropy calculated in a previous work [30]. The same eSG
were used to create models for proteins [33] and enzymes [34].

The best QPPR model can be used for the early detection of drug-
induced cardiac toxicities given the MS outcomes of a BP sample.
This type of QPPR models may be considered as the biopolymer
mixture analogue of classic QSPR models. More specifically, we can
describe it as a Quantitative Proteome–Toxicity Relationships
(QPTRs) in analogy to classic Quantitative Structure–Toxicity Rela-
tionship (QSTR) models. The graphic representation of the
approach proposed in this work for the early detection of drug-
induced cardiac toxicities is shown in Fig. 1.

2. Methods

2.1. Blood proteome MS dataset

For the generation of the MS Spiral networks of BP (BPMSSNs),
the calculation of the pk values and the development of the QPTR
models, we used tab-delimited data files containing mass/charge
(m/z) and peak intensity (I) values exported from serum rat pro-
teome high-resolution spectra reported by Petricoin et al. [27].
According to Petricoin et al., the data files are generated by first
exporting the raw data file generated from the QSTAR MS into tab-
delimited files that generated approximately 350,000 data points
per spectrum. The binning process condenses the number of data
points to 7105 points per sample. The high-resolution spectra are
binned using a function of 400 parts per million (ppm), so that all
data files possess identical m/z values (e.g., the m/z bin sizes linearly
increase from 0.28 at m/z 700 to 4.75 at m/z 12 000) [27]. Using
the Spontaneously Hypertensive Rat (SHR) model, in which
animals were challenged with doxorubicin or with mitoxan-
trone� dexrazoxane (a routinely used cardioprotectant), over 200
samples collected and stored frozen over a 4-year period (N¼ 203)
were analyzed. This study system has both well-known patholog-
ical and serum biomarker endpoints (cardiac lesion histological
changes and serum cardiac troponin concentrations (cTnT),
respectively) that have been recently used to measure effects of
therapeutic compounds on cardiac damage [35]. Since the cardiac
toxicity profile of 141 out of 203 samples analyzed was reported as



Fig. 1. Schematic representation of the early detection of drug-induced cardiac toxicities.
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unknown or with no definitive information about their cardiotoxic
profile, only 62 samples were used in this work:

- Definitive Positive (34 samples with overt cardiotoxicity): Tab-
delimited data files exported from serum proteome high-
resolution spectra belonging to sera from SHR model with
overt cardiotoxicity (cTnT� 0.15 ng/ml and histologic lesion
scores� 1.0). We also included as positive the samples for rats
with lower cTnT levels (�0.08 ng/ml) but as well with mild
apparent pathologic changes as determined by histological
score of lesion.

- Definitive Negative (28 samples without cardiotoxicity): Tab-
delimited data files exported from serum proteome high-
resolution spectra belonging to sera obtained from control SHR
prior to treatment or following only 1–3 treatments with saline
alone and whose cTnT¼ 0.

2.2. Blood proteome MS spiral networks

In order to generate the BPMSSNs we used MS binned data files
derived from raw data files which were derived from MS of BP [27].
In addition, for graph representation the averaged and standard-
ized m/z and I values were multiplied in order to obtain a value of
the relationship between m/z and I that makes possible a graph
representation. Such a Spiral graph is obtained in a similar way to
the four-color maps introduced by Randic et al. for DNA sequences
representation [31]. After that, a new averaged and standardized
data file is generated consisting of 36 data points which can be used
now in generating a blood proteome mass spectrum graph by using
a Spiral representation. Since the values of m/z and I were stan-
dardized, the mean value of the m/z–I relationship of each sample is
around 0.5. Consequently, a cut-off value of 0.5 is chosen for the
values of m/z–I relationship related to each averaged data point.
This cut-off value is used to codify each data point according to
their respective average m/z–I relationship values, allowing their
representation as a node on a 2D space. Specifically, in this work we
represented the data points of the mass spectrum as a Spiral of
nodes or vertices which are labelled differently; i.e. if the average
m/z–I relationship absolute value <0.5, then the node is labelled
with the letter C; otherwise is labelled with P. The Spiral begins
with the first averaged and standardized mass spectrum data point
(encoding information related to the spectrum’s lower m/z region)
and finishes in the last data point (spectrum’s higher m/z region). If
one connects the adjacent nodes labelled equally, then will obtain
the Spiral network representing the serum proteome mass spec-
trum shown in Fig. 2. Two nodes are considered adjacent only if
they are at one step away from each other in the Cartesian space.
The only allowed are the connections in ordinates’ and abscises’
direction. Diagonal connections are not allowed because Euclidean
distance of these nodes is different from 1 and consequently they
are not considered adjacent. As a result, a segment of nodes with
two different labels is obtained. Different labelling of nodes confers
to each spectrum network a particular topology allowing their
numerical (topological) characterization depending on the values
of m/z and I of every MS of each sample. There is certain similarity
between this type of BPMSSNs and other recently investigated by
our group, but the processing of the MS and the procedure to link
nodes in the Spiral network are different [36] (see next section).

2.3. Stochastic spectral moments of proteome MS spiral networks

By using the concept of Spectral Moments of a matrix we
introduced the spectral proteomic stochastic moments as numer-
ical indices of the BPMSSN [37], pk(SN). In so doing, we used
a Markov model (MM) to codify information about serum proteome
mass spectral regions. Specifically, in this work the pk(SN) was
derived from the so-called MARCH-INSIDE (MARkov CHains
INvariants for SImulation & DEsign) approach [38], which is used
here for the first time to codify the information content encoded in
a serum proteome mass spectrum. The MARCH-INSIDE approach
has been applied previously to the field of proteins [37,39–42].
Here, the classic matrix MARCH-INSIDE approach [39] has been
adapted to characterize the new Spiral networks. The method uses
essentially two matrix magnitudes: the matrix 1Q and the zero
order absolute initial probabilities vector Ap0. The matrix 1Q is built
up as a square matrix (n� n) and contains the probabilities 1pij to
reach a node ni moving throughout a walk of length k¼ 1 from
a node nj (see Eq. (1)).

1p
�
aij; cj

�
¼ aij*cj=

X
aij*cj; (1)

where, aij¼ 1 if and only if the two nodes ni and nj are neighbours,
placed at a topological distance k¼ 1 in the Spiral network, aij¼ 0



Fig. 2. Blood proteome MS Spiral Network representation on MARCH-INSIDE interface.
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otherwise. On the other hand, the parameter cj¼ 1 if the m/z–I
relationship> 0.5 for the MS region j represented by the node nj,
otherwise cj¼ 0.5. This algorithm is different to other we used
before processing MS and link nodes in the Spiral network [36]. On
the other hand, the vector Ap0 lists the absolute initial probabilities
Apk(j) to reach a node ni from a randomly selected node nj (see Eq.
(2)).

Ap0ðjÞ ¼ 1=N; (2)

where, the value N represents the number of nodes (spectral
regions) in the Spiral network. Due to the particularities of the
graph representation used here the Apk(j) only depends on the total
number of the data points or spectral regions on the graph.
Consequently, all the nodes in the graph have the same and
constant value of Apk. Since the elements of the matrices kQ (which
are the k natural powers of the matrix 1Q) depend on the adjacency
relationships between the nodes on the graph, the use of Markov
chains (MCH) theory thus allows calculating the spectral proteomic
stochastic moments (pk) for any node nj that one can reach in the
Spiral network by moving from any node ni throughout the entire
network using walks of length k:

pkðSNÞ ¼ Tr
��

1
Y�k�

¼
Xn

j¼1

kpij; (3)

where, Tr is the trace operator indicating the operation of summing
up all the probabilities kpii, within the main diagonal of these
matrices. Finally, the MARCH-INSIDE software was used to compute
the pk(SN) indices of order k¼ 0, 1, 2., 10). The p0 was not used for
the derivation of the QPTR models since the zero order index is
constant by definition and only gives information related to the
number of nodes or spectral regions in the spectrum graph.
2.4. LDA-based classification model of SN indices

Using the MARCH-INSIDE methodology as defined previously,
we can develop a Linear Discriminant Analysis (LDA)-QPTR based.
In the QPTR study the pk(SN) values are the TIs that play the role of
independent or predictive variables. We selected LDA [43] in order
to fit the discriminant function. The QPTR model classifies the rat’s
serum proteome spectrum into two general groups: cardiotoxic-
risk (CT¼ 1 for positive samples) and non-cardiotoxic-risk
(NCT¼�1 for negative samples). In Eq. (4), bk represents the
coefficients of the classification function, determined by the least
square method as implemented in the General Discriminant
Analysis (GDA), a module of the STATISTICA 6.0 software package
[44]. The general form of the QPTR model is described by the
following equation:

CTR ¼ bþ b1*p1ðSNÞ þ b2*p2ðSNÞ þ.þ bk*pkðSNÞ
¼ bþ

X
bk*pkðSNÞ; (4)

The best subset selection algorithm implemented on the GDA
module was the method used to find the best combination of
predictors producing the lowest percentage of misclassified
instances on training and test sets, respectively [45,46]. The
statistical significance of the LDA model was determined by Fisher’s
test by examining Fisher ratio (F) and the respective p-level (p). At
the same time, the square Mahalanobis’s distance (D2) between the
centroids of each one of the two groups (CT and NCT groups) and
Wilks’ U statistic were examined to test the discriminatory power
of the function developed [47]. All the variables included in the
model were standardized in order to bring them into the same
scale. Subsequently, a standardized linear discriminant equation
that allows to compare their coefficients is obtained [48]. We also
inspected the cases/variables ratios (r parameter), and the number
of variables to be explored in order to avoid over-fitting or chance
correlation [45].

The most frequent cross-validation methods are the following:
the independent dataset test, subsampling test, and jackknife test
[49]. Chou and Shen have shown that only the jackknife test has
the least arbitrariness [50,51]. Therefore, the jackknife test has
been increasingly used by investigators to examine the accuracy
of various predictors [52–57]. The Spiral QPTR model was trained
by using the randomly selected 75% (47 out of 62) of the samples
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available. To test the predictive ability of the model we used the
remaining 15 samples not used for training. The performance of
the model on training and validation sets was verified by their
respective Accuracies (Ac; it refers to the percentage of samples,
which the model classifies correctly), Sensitivities (Se; percentage
of cardiotoxic samples, which the model predicts to be car-
diotoxic), and Specificities (Sp; percentage of non-cardiotoxic
samples, which the model predicts to be non-cardiotoxic).

2.5. Machine learning classification algorithms

The data was analyzed with several different data mining
algorithms for classification implemented in Weka data mining
system [58,59]. We used three classification algorithms: a simple
classification rule (OneR) and two decision trees (the random
decision tree and the J48 decision tree). OneR, short for ‘‘One Rule’’,
is a simple machine learning classification algorithm that generates
a one-level decision tree. OneR is able to infer typically simple
classification rules from a set of instances that are straightforward
for humans to interpret. This algorithm creates one rule for each
attribute in the training data, and then selects the best rule as its
‘‘one rule’’. The most frequent class for each attribute value must be
determined to create a rule for a specific attribute. A rule is thus
simply a set of attribute values bound to their majority class and it is
based on such binding for each value of the attribute. OneR can also
define the error rate of a rule as the number of misclassified
training data instances by using the rule [59]. Typically, the
machine learning algorithms select the rule with the lowest error
rate as the best one. If two or more rules have the same error rate,
the rule is chosen at random. In opposition, the OneR algorithm in
Weka picks the rule with the highest number of correct instances,
not the lowest error rate, and does not randomly select a rule when
error rates are identical. Decision trees predict the value of
a discrete dependent variable with a finite set of values (called
class) from the values of a set of independent variables (called
attributes), which may be either continuous or discrete. In this
study, the class and the attributes or predictor variables remain the
same that for the LDA model.

Decision tree algorithms are based on a divide-and-conquer
approach and are also referred to as the so-called top-down
induction of decision trees [60]. The algorithms work top-down,
seeking at each stage an attribute that best separates the different
classes, and then repeating recursively the process for each subset
that results from the split. The most informative attribute is
selected by introducing a function that assigns a value of the quality
of the partition obtained by a specific attribute. Regarding contin-
uous attributes, a threshold is determined, which splits the (sub)-
tree into two ‘branches’, while with regard to discrete variables,
‘branches’ are created for each possible value of an attribute. The
final subsets are called the ‘leaves’ and are labelled with a class.

Specifically, we used two classification trees implemented in
Weka for the SN stochastic moment results. A random decision tree,
which considers k randomly chosen attributes at each node and
performs no pruning and a J48 decision tree. J48 algorithm [59] is
an implementation of the C4.5 decision tree learner [61]. The
algorithm for induction of decision trees uses the greedy search
technique to induce decision trees for classification. C4.5 builds
decision trees on the basis of the training data and then refines the
tree to infer rules. Such an algorithm builds the complete tree and
then refines it. J48 is similar to the C4.5 algorithm. However, once
the tree is refined and pruned, no rules are inferred. We used the
J48 and Random Tree default configurations which can be
summarized as follows. For the J48 classification tree pruning is on
and the technique used is sub-tree raising. The confidence
threshold for pruning is 0.25, the minimum instances-per-leaf
parameter is set to 2 and the number of folds, for the reduced error
pruning value is set to 3. Regarding the random tree, the number of
randomly chosen attributes is set to 1, the maximum depth of the
tree is set to 0 for unlimited, and the minimum total weight of the
instances in a leaf and the random number seed used for selecting
attributes are set to 1.

The same training and external validation sets used for the
LDA model were used in developing these classifiers. We also
applied a 4-fold cross-validation based on training data to each
classifier in order to consider another criterion in selecting the
most predictive classifier. Here, a dataset having n(47) instances
is divided into k(4) folds, where each fold has approximately n/k
instances. The training and testing are done iteratively, in k
iterations. In ith iteration, instances in all folds except the ith
fold are used in the training phase and the instances from the
ith fold are used for testing. Hence every instance from the
dataset, is used exactly once as a training instance and k� 1
times as a testing instance.

As used for the LDA model, the Accuracy, Sensitivity and Spec-
ificity values as well as the area under the receiving operating
characteristic (ROC) curve were used as measures of performance.
Other measures of performance were used additionally:

- Number of True Positives (TP): the number of examples
(samples) classified as positive (cardiotoxic) and which are
actually positive (correct classification);

- Number of False Positives (FP): the number of examples classified
as positive and which are actually negative (non-cardiotoxic);

- Number of True Negatives (TN): number of examples classified as
negative and which are actually negative (correct classification);

- Number of False Negatives (FN): number of examples classified
as negative and which are actually positive.

Using the above-observed information, the following statistical
measures were calculated:

- Precision [TP/(TPþ FP)] - it gives what percentage of the
examples predicted to be positive are actually positive.

- Recall [TP/(TPþ FN)] - it gives what percentage of all positive
examples were actually predicted to be positive by the
algorithm.

- F-Measure [2*Precision*Recall/(Precisionþ Recall)] - it repre-
sents the relation that precision and recall should have. A high
value (z1) for precision with a low value (z0) for recall is not
suggestive. Similarly, high value for recall with a low value for
precision does not mean much. For a perfect classifier, both
precision and recall should be 1. A high value (z1) of F-
Measure implies a good classification.

- Kappa Index [TP/(TPþ FNþ FP)] - it is used to evaluate the agree-
ment between predicted and observed nominal values in one
dataset, while correcting for agreement that occurs bychance [62].
2.6. Proteome MS embedded star networks

The MS results have been transformed in the previous sections
as a sequence of P and C letters. This sequence, that corresponds to
the MS experiments, is similar to a protein sequence containing
only two amino acid types and can be analyzed with the Star
Network methods considering that each node is a letter (P or C) and
the connections are between the nodes from the same group of
characters (P or C). The star graph is the abstract representation of
the network and this is a special case of trees with N vertices where
one has got N� 1 degrees of freedom and the remaining N� 1
vertices have got one single degree of freedom [63]. For proteins,
each of the 20 possible branches (‘‘rays’’) of the star contains the
same amino acid type and the star centre is a non-amino acid
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vertex. In our case, the graphs will contain only two branches
corresponding to the types of sequence character types (P and C). If
the initial connectivity in the MS sequence is included, the graph is
embedded (Fig. 3). In order to compare the graphs, it is necessary to
transform the graphical representation in connectivity matrix,
distance matrix and degree matrix. In the case of the embedded
graph, the matrices of the connectivity in the sequence and in the
star graph are combined. These matrices and the normalized ones
are the base for the topological indices calculation.
Fig. 3. Blood proteome MS embedded Star Network representation.
2.7. Proteome MS embedded star networks TIs

The MS single-letter sequences are transformed into eSG TIs
using S2SNet (Sequence to Star Networks) [64]. These calculations
are characterized by non-weights, Markov normalization matrices
and power of matrices/indices (n¼ 0–5). The summary file contains
the following topological indices [65]:

Shannon Entropy of the n powered Markov Matrices [pn(eSG)]:

pnðeSGÞ ¼
X

i

pi*logðpiÞ; (5)

where pi are the ni elements of the p vector, resulted from the
matrix multiplication of the powered Markov normalized matrix
(ni� ni) and a vector (ni� 1) with each element equal to 1/ni.

The trace of the n connectivity matrices [pn(eSG)]:

pnðeSGÞ ¼
X

i

�
Mn�

ii; (6)

where n¼ 0 – power limit, M¼ graph and sequence connectivity
matrix (i*i dimension); ii¼ ith diagonal element.

Harary number (H):

H ¼
X
i<j

�
1=dij

�
; (7)

where dij are the elements of the distance matrix.
Wiener index (W):

W ¼
X
i<j

dij; (8)

Gutman topological index (S6):
4X¼
X

i<j<k<m<o

mij*mjk*mkm*mmo=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
degi*degj*degk*degm*dego

�r
; (15)

5X ¼
X

i<j<k<m<o<q

mij*mjk*mkm*mmo*moq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
degi*degj*degk*degm*dego*degq

�r
; (16)
S6 ¼
X

ij

degi*degj=dij; (9)

where degi are the elements of the degree matrix.
Schultz topological index (non-trivial part) (S):

S ¼
X
i<j

�
degi þ degj

�
*dij; (10)

Balaban distance connectivity index (J):

J ¼ ðedges� nodesþ 2Þ*
X
i<j

mij*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi X
k

dik*
X

k

dkj

!vuut ; (11)
where nodesþ 1¼AA numbers/node number in the Star Graphþ
origin,

P
k dik is the node distance degree.

Kier–Hall connectivity indices (nX):

0X ¼
X

i

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdegiÞ

q
; (12)

2X ¼
X

i<j<k

mij*mjk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
degi*degj*degk

�r
; (13)

3X ¼
X

i<j<k<m

mij*mjk*mkm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
degi*degj*degk*degm

�r
; (14)
Randic connectivity index (1X):

1X ¼
X

ij

mij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
degi*degj

�r
; (17)

These topological indices are used to construct LDA-QPTR based
classification models in order to compare them with the same type
of model, obtained with SN stochastic moments in this work and
with the previous Lattice Network (LN) and SN Shannon entropy
results [30]. We chose S2SNet in order to analyse sequences of
transformed MS, in the same way that DRAGON [66] can analyse
the small molecules, but cannot the mass spectra. Thus, we calcu-
late Dragon like indices such are the Shannon entropies (pn(eSG),



Table 1
Classification matrices and performance of the LDA-based classification model on
training and validation sets.
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n¼ 0–5), the topological indices (W, H, S, S6, J) and the connectivity
indices (nX, n¼ 0–5).
Model training Model validation

NCT CT NCT CT

NCT 18 3 NCT 5 2
CT 3 23 CT 2 6
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
87.23% 88.46% 85.71% 73.33% 71.43% 75.00%
2.8. LDA-based classification model of eSG TIs

The same GDA method from STATISTICA has been chosen as the
simplest and fastest method. In order to decide if a MS is NCT or CT,
we added an extra dummy variable named NCTorCT (binary values of
0/1) and a cross-validation variable (CV). In the actual model, based
on eSGs, the independent data test is used by splitting the data at
random in a training series (T, 75%) used for a model construction
and a prediction one (P, 25%); for model validation (the CV column is
filled by repeating 3 T and 1 P). All independent variables are stan-
dardized prior to model construction. Using S2SNet methodology, as
defined previously we can attempt to develop a simple linear QPTR,
with the general formula, similar with Eq. (4):

NCT=CT-score ¼ c0 þ
X

i¼1/n

ci*Ti; (18)

where NCT/CT-score is the continue score value for the NCT/CT
classification, Ti¼ all the eSG TIs described above, c1� cn¼ eSG TIs
coefficients, n is the number for the indices and c0 is the inde-
pendent term. The GDA models’ quality was determined by
examining the same Wilks’ statistic (U), Fisher ratio (F), p-level (p)
and square Mahalanobis’s distance (D2). The Best subset model type
was tested for the embedded TIs.
3. Results and discussion

3.1. Quantitative proteome–toxicity relationships

In the present work we propose the use of the graph theory
combined with high-throughput mass spectrometry to the field of
toxicoproteomics. In order to illustrate the potentialities of this
approach, on the early detection of drug-induced cardiac toxicities,
in the first step we decided to develop a QPTR based on pk(SN),
used here as numerical indices of the blood proteome mass spec-
trum Spiral network. The best LDA-based QPTR equation founded is
described below:

NCT=CT-score ¼ 0:31� 187:58*p4ðSNÞ þ 940:64*p6ðSNÞ
� 666:77*p7ðSNÞ � 380:05*p8ðSNÞ
þ 292:27*p10ðSNÞ

(19)

N ¼ 47; F ¼ 4:05;D2 ¼ 1:92;U ¼ 0:67;p ¼ 0:004:

This prediction model demonstrated an accuracy of 87.23% in
classifying spectra coming from rat serum with overt cardiotoxicity
and ‘‘non-cardiotoxic spectra’’. Specifically, 23 out of 26 CT samples
and 18 out of 21 NCT samples were classified correctly, respectively
Table 2
The significance of the predictors for all data subsets variations in the LDA model (SN).

Subset no CV Misclassification rate No. of effects p4

1 23.40 4 in
2 25.53 5 in
3 25.53 3
4 29.79 2
5 29.79 2
6 29.79 2 in
7 29.79 2 in
8 29.79 2
9 29.79 2 in
10 29.79 2
(see Table 1 for details). The statistical significance of the model was
evaluated through Fisher’s test where F is the Fisher ratio and p
represents the overall significance of the variables included in the
model. Parsimony was tested by r value which is the ratio between
the number of cases and the adjustable parameters. A value of r

should be around 4 to discard any possibility of over-fitting. The
same types of models and parameters have been used in previous
works for the classical QSAR/QSPR models of small molecules [67]
or for the QSPR studies of polymers [68]. Eq. (19) contains only
p4(SN), p6(SN), p7(SN), p8(SN), p10(SN) and not use p0(SN), p1(SN),
p2(SN), p3(SN), p5(SN), p10(SN) as a result of the Best subset analysis
algorithm, which select as more significant those predictors with
the lowest CV misclassification rates (Table 2). All predictors used
here have rates lower than 30%, which demonstrates the high
significance of the predictors for all data subsets variations in CV
with best subset analysis and high tolerance of the model to
predictor variation.

Additionally, the square of Mahalanobis’s distance (D2) and
Wilks’ U statistic provide a measure of the model’s discrimina-
tory power expressed through the relation between the intra-
and inter-class variabilities and the separation between the
centroids of each group, respectively. The small variation
between the m/z and I values in data files generated from serum
proteome mass spectra of cardiotoxic and non-cardiotoxic
samples could be the cause of the non-ideal separation (100%)
between the two groups. This is a logic result for an MS of a BP
sample since the number of protein related to a toxic event is
presumed to be insignificant in relation to the total number of
serum proteins. However, we have discussed possible problems
inherent to data generated with the present MS methodology
[69,70]. They could affect the final validity of any kind of inter-
pretation derived from it, independently of the discriminant
power of the type of CIs, network, or statistical method used to
fit the QPPR model. This fact, may also explain the existence of
some misclassified cases. The non-ideal separation between the
two groups should not be considered the consequence of the MS
method because of the influence of other factors such as the type
of graph representation, the class of topological indices, the
classification algorithm and the animal population. This is
a reasonable limitation of this kind of analysis but does not
invalidate the results. In addition, the ROC curve [71] obtained,
indicates that the model is not at random, but a statistically
significant, classifier (see Fig. 4).
(SN) p6(SN) p7(SN) p8(SN) p10(SN)

in in in
in in in in
in in in

in in
in in

in
in

in in
in

in in



Fig. 4. Receiver operating characteristic curve (ROC curve) related to LDA model.
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After all, the predictive ability of the model was assessed by
using 15 samples never used for training. The proposed model was
able to classify correctly 11 out of 15 samples (global pre-
dictability¼ 73.33%). In particular, 6 out of 8 CT samples
(Sensitivity¼ 75%) and 5 out of 7 NCT samples (Specific-
ity¼ 71.43%) were classified correctly. Next, it is necessary to find
out if the basic assumptions of LDA are fulfilled [45,47] because in
the case of severe violations, the reliability of the model’s predic-
tions could be compromised. The details about the statistical
assumption can be found in Supplementary information section
and in Fig. SM4 and Table SM5 from the supplementary material.

Finally, due to the limited data used in this work we must alert
that the QPTR model developed is intended to prove the usefulness
of the BPMSSNs and the numerical indices pk(SN) derived from this
representation for toxicoproteomics studies. A dataset containing
a higher number of samples could lead to really improved models,
with a wider applicability domain. Specifically, the applicability
domain of our model is limited by the number of instances
(samples) used for training. A simple method to determine the
applicability domain of a model is by plotting the standardized
Fig. 5. Analysis of the Domain of A
residuals vs. the leverages of the training instances [72]. The
leverage (h) of an instance in the original variable space measures
its influence on the model. The leverage of an instance hi (see Eq.
(21)) can be obtained from the respective diagonal elements of the
hat matrix H (see Eq. (20)) [73].

H ¼ X$
�

X$XT
��1

$XT (20)

or

hi ¼ x!T
i

�
X$XT

��1
x!i ði ¼ 1;.;nÞ (21)

where x!i is the descriptor vector of the considered instance and X
is the model matrix derived from the training set descriptor values.
The warning leverage h* is defined as follows:

h* ¼ 3� p0=n (22)

where n is the number of training instances and p0 is the number of
model adjusting table parameters.

Fig. 5 shows the applicability domain of the LDA model, which is
determined by training instances with h values lower than
h*¼ 0.383. The 15 new instances used for validation are also rep-
resented in the leverage plot shown in Fig. 6 in order to check
whether they lie or not within the applicability domain of the
model and consequently how reliable are the predictions. New
instances such as that coming from the positive (cardiotoxic)
sample 473 with an h value (0.392) higher than h* and/or a value of
standardized residual higher than 2 are out of the applicability
domain of the model and consequently their predictions must be
considered with caution.

In order to compare the values obtained with the Spiral
network, we constructed several QPTR classification models using
different classes of eSG TIs (Shannon entropies, spectral moments,
topological indices and connectivity indices), all eSG TIs and the set
of SN and eSG TIs (see Table 3). The best LDA-based QPTR equation
based on all eSG TIs is described below:

NCT=CT-score ¼ 574:43� 31979:38*Sh0 � 37576:67*Sh3

� 20431:66*Sh4 � 9337:56*Sh5

� 66125:67*p4ðeSGÞ � 33353:95*p5ðeSGÞ

þ 636:27*S6 þ 136:78*Sþ 51989:63*0X

þ 12228:30*2X � 2123:53*4X

(23)
pplicability of the LDA model.



Fig. 6. Analysis of the Domain of Applicability of the three machine learning classification algorithms.
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N ¼ 62; F ¼ 2:29;D2 ¼ 2:79;U ¼ 0:58;p ¼ 0:029

The model showed an Ac of 76.60%/86.67%, a Se of 65.38%/75.00%
and an Sp of 90.48%/100% for the training/validation sets. Thus, the
eSG models based on any TI class or all TIs have less quality (values
less than 70%) than the SN best model, but better quality than
the previous LN models (see Table 3) [30]. If we consider only
the Shannon entropy models, the quality of the models increases in
the following order: LN, eSG and SN. Using the spectral moments,
the SN model is characterized by reasonable Ac/Se/Sp values
(greater than 70%) opposite to the corresponding eSG model (less
than 70%, even one value less than 40%). The combination of the SN
spectral moments with all the eSG TIs produces a model of a better
quality than in the case we are using only all the eSG TIs, but still
with no reasonable Ac/Se/Sp values as in the case of the SN spectral
moment model. These results proposed the SN spectral moments
for the LDA models.
Table 3
Comparison of the LDA-based QPTR models for the LN, SN and eSG.

Class Calculated indices Graph Calculation
software

Shannon entropies pk(LN), k¼ 0–10a LN MARCH-INSIDE
Shannon entropies pk(SN), k¼ 0–10a SN MARCH-INSIDE
Shannon Entropies pn(eSG), n¼ 0–5 eSG S2SNet
Spectral moments pk(SN), k¼ 0–10 SN MARCH-INSIDE
Spectral moments pn(eSG), n¼ 0–5 eSG S2SNet
Topological indices W, H, S, S6, J eSG S2SNet
Connectivity indices nX, n¼ 0–5 eSG S2SNet
All eSG indices pn(eSG), pn(eSG), W, H, S, S6, J,

n¼ 0–5
eSG S2SNet

SN and eSG indices pk(SN), k¼ 0–10; pn(eSG), pn(eSG),
W, H, S, S6, J, n¼ 0–5

SN and
eSG

MARCH-INSIDE
and S2SNet

Note: LN¼ lattice network; SN¼ spiral network; eSG¼ embedded star graph; Sp¼ speci
a Ref. [30].
Until now we have demonstrated that the proposed SN LDA
model is not a random classifier, is sufficiently accurate, has
a satisfactory parsimony, and displays satisfactory robustness and
predictivity. However, some LDA parametrical assumptions
(normality and non-collinearity) are violated. Although the LDA is
a robust multivariate technique and usually it is not affected by
slight violations of these assumptions, we prefer to test the
usefulness of the pk(SN) numerical indices derived from blood
proteome mass spectrum Spiral network for toxicoproteomics
studies, by using other non-parametrical techniques like machine
learning classification algorithms. In this sense, we tested three
classification algorithms implemented in WEKA data mining
system [58,59]. The first classification algorithm derived, and at the
same time, the simplest was a OneR algorithm. The classification
rule derived from several statistics of the performance of this rule is
shown in Table 4. As it can be noted, this classification rule shows
good performance measures in training, 4-fold cross-validation and
external validation based on only one predictor variable, p4(SN).
Dragon like
indices

Model training Model validation

Sp % Se % Ac % Sp % Se % Ac %

þ 89.29 32.35 58.06 85.71 29.41 53.22
þ 100.00 70.59 83.87 89.29 67.65 77.42
þ 90.48 61.54 74.47 85.71 37.50 60.00
� 85.71 88.46 87.23 75.00 71.43 73.33
� 90.48 61.54 74.47 85.71 37.50 60.00
þ 90.48 61.54 74.47 85.71 25.00 53.33
þ 90.48 61.54 74.47 85.71 37.50 60.00
� 90.48 65.38 76.60 100.00 75.00 86.67

� 90.48 80.77 85.11 85.71 62.50 73.33

ficity; Se¼ selectivity; Ac¼ accuracy.



Table 4
OneR classification algorithm and their respective measures of performance (SN).

One rule classification algorithm
CLASS¼ CT IF p4(SN)< 6.35825 or 6.62405<p4(SN)< 6.77775
CLASS¼NCT IF 6.35825<p4(SN)< 6.62405 or p4(SN)� 6.77775
Performance details
Training 4-Fold cross-validation External validation
Confusion matrix Confusion matrix Confusion matrix

CT NCT CT NCT CT NCT
CT 20 6 CT 20 6 CT 7 1
NCT 1 20 NCT 6 15 NCT 2 5
Performance Performance Performance
Accur. Sensit. Spec. ROC area Accur. Sensit. Spec. ROC area Accur. Sensit. Spec. ROC area
85.1% 76.9% 95.2% 0.86 74.5% 76.9% 71.4% 0.74 80% 87.5% 71.4% 0.80
Prec. Recall F Kappa Prec. Recall F Kappa Prec. Recall F Kappa
0.95 0.77 0.85 0.71 0.77 0.77 0.77 0.48 0.78 0.875 0.82 0.59
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The second classification algorithm derived was based on a J48
decision tree. This is also a very simple tree with only three
predictors variables [p1(SN), p4(SN) and p7(SN)] used for the
derivation of the classification rules. The J48 tree, constructed with
only four nodes and five leaves which correspond to five points
of classification decision (see Table 5), showed very good statistics
on training, 4-fold cross-validation and external validation.
Specifically, the sensitivity of this algorithm is excellent, especially
on the external test set (100%). However, the specificity does not
rise above the 71% on the external test set (see Table 5 for details).

Finally, the random tree shown in Table 6 demonstrates the best
specificity among the three machine learning algorithms derived
(100% on training and 85.7% on 4-fold cross-validation and external
validation). Conversely, this tree is much more complex than the
J48 and evidently than the OneR algorithm. Additionally, the
performance on external test set contrasted to the performance on
the training set is also much lower than the J48 and OneR
algorithms, suggesting some overtraining. As shown, the three
classification algorithms prove a good global performance (see
Tables 4–6 for details). However, each one of the three classifiers
Table 5
J48 classification tree and their respective measures of performance (SN).

J48 classification tree Performanc
Training
Confusion m

CT
NCT
Performanc
Accur.
93.7%
Prec.
0.93
4-Fold cross
Confusion m

CT
NCT
Performanc
Accur.
78.7%
Prec.
0.81
External val
Confusion m

CT
NCT
Performanc
Accur.
86.7%
Prec.
0.80
stands out from the other two due to a particular property of the
performance. The OneR algorithm is the simplest classifier, the best
sensitivity is shown by the J48 classification tree, and the random
tree is the most specific. Depending on the final goal, the user can
take advantage of this disparity and use the most suitable classifier.
We have to bear in mind the same considerations in the case of the
applicability domain used for the LDA model.

Fig. 6 shows the leverage plot for the three classifiers for training
and test instances carried out to establish the respective applica-
bility domains. In this sense, the random tree is the only classifier
not fully applicable to the external test set. As in the LDA model, the
instance coming from the cardiotoxic sample 473 is slightly out
of the applicability domain of the random tree classifier (h¼
0.387). Since the prediction of this instance should be considered
cautiously, the global performance is affected. However, the
instance out of the domain is positive and consequently the spec-
ificity is not affected.

Finally, the goal here is the early detection of drug-induced
cardiac toxicity. Hence, the most important feature to consider is
the sensitivity of the classifier since the consequences of
e details

atrix
CT NCT
25 1
2 19

e
Sensit. Spec. ROC area
96.2% 90.5% 0.95
Recall F Kappa
0.96 0.94 0.87

-validation
atrix

CT NCT
21 5
5 16

e
Sensit. Spec. ROC area
80.8% 76.2% 0.78
Recall F Kappa
0.81 0.81 0.57

idation
atrix

CT NCT
8 0
2 5

e
Sensit. Spec. ROC area
100% 71.4% 0.90
Recall F Kappa
1.00 0.89 0.73



Table 6
Random classification tree and their respective measures of performance.

Random classification tree

Performance details
Training 4-Fold cross-validation External validation
Confusion matrix Confusion matrix Confusion matrix

CT NCT CT NCT CT NCT
CT 25 1 CT 21 5 CT 6 2
NCT 0 21 NCT 3 18 NCT 1 6
Performance Performance Performance
Accur. Sensit. Spec. ROC area Accur. Sensit. Spec. ROC area Accur. Sensit. Spec. ROC area
97.9% 96.2% 100% 0.99 83% 80.8% 85.7% 0.81 80% 75% 85.7% 0.79
Prec. Recall F Kappa Prec. Recall F Kappa Prec. Recall F Kappa
1.00 0.96 0.98 0.96 0.88 0.81 0.84 0.66 0.86 0.75 0.80 0.60
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misclassifying a CT sample (it classifies a CT sample as NCT) can be
more devastating due to the potential risk to human life than in the
opposite case. Accordingly, the J48 classifier is beginning to look
like the most likely candidate. Other facts in support of this choice
are the simplicity of the J48 tree contrasted to the random tree as
well as the much better performance on the external test set con-
trasted to the random tree and the OneR classification algorithms.
An exhaustive comparison of the measures of performance (Ac, Se,
Sp, Kappa Index) of the three classifiers on training and validation
Table 7
Comparison of the performance of the One Rule (OneR), J48 tree (J48) and Random tree
dation in the case of SN.

Performance measure Training

Accuracy RT> J48>OneR
Sensitivity J48¼RT>OneR
Specificity RT>OneR> J48
Precision RT>OneR> J48
Recall J48¼RT>OneR
F-Measure RT> J48>OneR
Kappa index RT> J48>OneR
ROC area RT> J48>OneR
Simplicity OneR> J48> RT
experiments is shown in Table 7. The results of the comparison
shown in this table fully justify the choice of the J48 classifier as the
best option for the early detection of the drug-induced cardiac
toxicity.

4. Concluding remarks

In this work, we defined new TIs, which are the stochastic
spectral moments of the BPMSSNs, pk(SN), and we compared them
(RT) classification algorithms on training, 4-fold cross-validation and external vali-

4-Fold cross-validation External validation

RT> J48>OneR J48>OneR¼ RT
J48¼RT>OneR J48>OneR> RT
RT> J48>OneR RT>OneR¼ J48
RT> J48>OneR RT> J48>OneR
J48¼RT>OneR J48>OneR> RT
RT> J48>OneR J48>OneR> RT
RT> J48>OneR J48> RT>OneR
RT> J48>OneR J48>OneR> RT
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with several eSG TIs. In addition, the actual work results are
compared with the LN and SN Shannon entropy models presented
in a previous work. We showed the low quality results obtained
with the eSG despite the good results in the case of protein
sequences in the previous works. The comparison between the TI
classes and network types shows the promotion of the SN
stochastic moments for the graphical analyses of the blood pro-
teome mass spectra, opposite to the eSG stochastic moments, eSG/
SN/LN Shannon entropies, eSG topological indices and eSG
connectivity indices. Thus, we demonstrated the potentialities of
using the BPMSSNs proposed and the pk(SN) indices derived from
these graphs to the study of complex mixtures of biopolymers such
as BP with special relevance to the field of toxicoproteomics. The
method could be in principle extended to other mixtures of
biopolymers.
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Appendix. Supplementary data

The computed values of the five pk(SN) predictor variables
included in the LDA-based QPTR model; observed and predicted
classifications according to the LDA model; posterior probabilities
to be classified as CT or NCT according to the LDA model; respective
values of leverage and standardized residual (Std. Res.); and the
distribution of the 62 samples used for training or model validation
are depicted in Table SM1 of the supplementary material related to
this paper. The computed values of the seven pk(SN) predictor
variables used for the three Machine Learning classification algo-
rithms; observed and predicted classifications according to the
OneR, J48 decision tree and Random decision tree classification
algorithms, respectively; and the distribution of the 62 samples
used for training or model validation are depicted in Table SM2. The
values of leverage related to the OneR, J48 decision tree and
Random decision tree classification algorithms, respectively for the
62 samples used are depicted in Table SM3.

As the names imply, LDA establishes a linear, additive relation-
ship between the predictive variables and the response variable
and indeed, this is the simplest functional form to adopt with no
prior information. Visual inspection of the distribution of the
standardized residuals for all drugs (standardized residuals vs.
cases; see section A in Fig. SM4) supports this choice, as no
systematic pattern is seen [74]. When we checked the parametric
assumption of multivariate normality of residuals, it was found that
the residuals do not exhibit adequate values of skewness and
kurtosis [47], which is a sign of deviation from normal distribution.
The hypothesis of multivariate normality of residuals is rejected
according to the three Kolmogorov–Smirnov, Shapiro–Wilks and
Lilliefors hypothesis tests applied (statistic values in Table SM5).
The frequency histograms shown in section B of figure. SM4
confirms visually the violation of the normality assumption. In
addition, as the term related to the error (represented by residuals)
is not included in the LDA equation, the mean must be 0. Actually,
the residual mean value for our model is close to the assumed value
of 0 (see Table SM5).

Moving on to the next important parametric assumption of LDA,
i.e. homocedasticity (i.e.: homogeneity of variance of the variables)
was also checked by simply plotting the square standardized
residuals for each predictor variable [47]. The plots in section C of
Fig. SM4 reveal an adequate scatter on the points, without any
consistent pattern, validating the assumption of homocedasticity.
In addition, the variables included in the model exhibit a high
collinearity (pair correlation between one or more than one vari-
ables higher than 0.7). As a consequence, the common interpreta-
tion of a regression coefficient, as measuring the change in the
expected value of the response variable when the given predictor
variable is increased by one unit while all other predictor variables
are held constant, is not fully applicable when multicollinearity
exists. However, the fact that some or all predictor variables are
correlated among themselves neither, in general, inhibits the
model’s ability to obtain a good fit nor it tends to affect inferences
about the mean responses or predictions of new observations [75].
Supplementary data associated with this article can be found in the
online version, at doi:10.1016/j.polymer.2008.09.070.
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